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U-937 cells

Macrophage-like cells

Fig. S1. FACS gating for sorting single monocyte and macrophage-like cells.
Representative FACS gatings are shown for the selection of live monocyte and macrophage-like cells, sepa-
rating them from debris, dead cells, or granules. Secondary gating was used to decrease the probability of
sorting doublets.
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Fig. S2. Protein abundance estimates for proteins quantified by SCoPE2
Rieckmann et al. [10] analyzed a bulk sample of classical monocytes and estimated (as LFQ intensity) the
abundance of about 9,500 proteins, displaced as a black distribution. The subset of these proteins that were
also quantified in single cells from SCoPE2 sets are displayed as a red distribution. The median LFQ intensity
is indicated with a blue arrow. Based on the protein estimate method suggested by Milo [11], the median
protein copy number is roughly 10,000-20,00 protein copies per cell.
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Fig. S3. Scaling of MS signal with protein input and peptide identification based on MS spectra.
(a) A ladder of 1 to 6 single cell equivalents. The average signal measured per SCoPE2 channel scales linearly
with its input. We performed 6 experiments and varied (randomized) the TMT labels used for different input
amounts. The error bars denote standard deviations between replicates. (b) Number of peptides and proteins
identified by MaxQuant per SCoPE2 set at 1% FDR. These identifications are based only on the MS spectra
and do not incorporate retention time information.
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a b

Fig. S4. Quality control plot for single-cell RNAseq data from the 10x Chromium platform.
(a) A distribution of number of unique molecular barcodes per cell. The left mode likely corresponds to empty
droplets while the right mode corresponds to the single cells. All cells used for our analysis were sampled from
the peak of the second mode. (b) A scatter plot of number of genes detected per cell versus the number of
unique molecular barcodes per cell.

5



0 200 400 600 0 200 400 600

0.00

0.25

0.50

0.75

Number of Peptides

Pr
ec

ur
so

r I
on

 F
ra

ct
io

n 
(P

IF
)

1.0 Th window0.7 Th window
a

0

5

10

15

20

Is
ol

at
io

n 
In

te
rf

er
en

ce
 (

IF
),

 %b

Fig. S5. Estimating the purity of MS2 spectra as a function of the width of the isolation window and by two
independent search engines. (a) MaxQuant uses the precursor ion fraction (PIF) to estimate the fraction of the
ion intensity originating from the precursor assigned to a peptide spectral match for each MS2 spectrum [4,12].
The distributions of PIF values for two controlled experiments indicate that the isolation window width used by
SCoPE2 (0.7 Th) results in purer spectra compared to the isolation width (1.0 Th) used with SCoPE-MS. (b)
Proteome Discoverer (PD) uses a completely different approach to estimate the contamination of MS2 spectra
by interfering ions coisolated with the precursor ion. PD estimates Isolation Interference (IF), which should
equal to 100% − PIF . The distribution of low IF values for the SCoPE2 data affirms the high spectral purity
estimated by MaxQuant as shown in the main Figure 3d. As in main Figure 3, the green square is the median
and the red plus is the mean IF.
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Fig. S6. Raw reporter ion intensities for macrophage-capping protein (CAPG) measured in a SCoPE2 set. The
reporter ion intensities for peptides originating from CAPG in experiment 190222S-LCA9-X-FP94AP are dis-
played for each single cells. The sequence TSTGAPAAIKK was observed in the carrier channel, but not
quantified in single cells, and thus omitted from the plot and any quantitative analysis.
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Fig. S7. Analysis without any imputation qualitatively recapitulate the results from the imputed data.
(a) Principal component analysis was computed using only measured protein levels (without any imputation)
and minimal data processing. To correct for differences between the 6 different batches of sample preparation,
the levels of each protein were normalized to z-scores within each individual set by subtracting the mean and
dividing by the standard deviation. The PCA analysis and data display were performed as in main Figure 4a that
used imputed and batch corrected data. (b) Colorcoding each cell from the PCA analysis by its corresponding
sample preparation batches indicates relatively uniform distribution of cells from the different batches within
the 2D PCA projection space. (c) A heatmap from performing the spectral clustering from main Figure 5a on
the raw protein measurements without imputation and batch correction. Missing data points are shown in gray.
Only proteins with less than 50% missing data are displayed. (d) A heatmap from performing the spectral
clustering from main Figure 4b on the raw protein measurements without imputation and batch correction.
Missing data points are shown in gray. Only proteins with less than 50% missing data are displayed.
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Fig. S8. Macrophage-like single cells from the mRNA data set display a gradient of polarization. The single-cell
RNA data for macrophage-like cells were analyzed analogously to the protein data shown in main figure 5.
Displayed are the top 25% most variable mRNA (518) levels across 425 single cells. The level for each mRNA
is relative to its mean level across the 425 single cells. The levels of genes in the selected mRNA data that are
enriched in M1 or M2-polarized macrophages [6] are plotted below.
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Fig. S9. Gene set enrichment analysis of cluster 1
Gene set enrichment analysis [13] identified statistically significant functional groups of genes that show differ-
ential abundance at the mRNA and protein levels in macrophages and monocytes from Cluster 1 in main Fig.
6. The colormap shows fold changes relative to the mean across all single cells on a log2 scale.
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Fig. S10. Gene set enrichment analysis of cluster 2
Gene set enrichment analysis [13] identified statistically significant functional groups of genes that show differ-
ential abundance at the mRNA and protein levels in macrophages and monocytes from Cluster 2 in main Fig.
6. The colormap shows fold changes relative to the mean across all single cells on a log2 scale.
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